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Abstract. We consider a 3D dilute Bose-Einstein condensate at thermal equilibrium in a rotating harmonic
trap. The condensate wavefunction is a local minimum of the Gross-Pitaevskii energy functional and we
determine it numerically with the very efficient conjugate gradient method. For single vortex configurations
in a cigar-shaped harmonic trap we find that the vortex line is bent, in agreement with the numerical
prediction of Garcia-Ripoll and Perez-Garcia [Phys. Rev. A 63, 041603 (2001)]. We derive a simple energy
functional for the vortex line in a cigar-shaped condensate which allows to understand physically why the
vortex line bends and to predict analytically the minimal rotation frequency required to stabilize the bent
vortex line. This analytical prediction is in excellent agreement with the numerical results. It also allows to
find in a simple way a saddle point of the energy, where the vortex line is in a stationary configuration in the
rotating frame but not a local minimum of energy. Finally we investigate numerically the effect of thermal
fluctuations on the vortex line for a condensate with a straight vortex: we can predict what happens in
a single realization of the experiment by a Monte Carlo sampling of an atomic field quasi-distribution
function of the density operator of the gas at thermal equilibrium in the Bogoliubov approximation.

PACS. 03.75.Fi Phase coherent atomic ensembles; quantum condensation phenomena –
67.40.Vs Vortices and turbulence

1 Introduction

Several experimental groups have now produced vortices
in Bose condensates of atomic gases by a rotation of the
trapping potential [1–3]. It is therefore important to char-
acterize the steady state vortex configurations for param-
eters relevant to the experiments. In particular the regime
of the ENS and MIT still deserves some investigation. It
corresponds to a condensate trapped in a cigar-shaped
harmonic potential, that is with a harmonic oscillation
frequency along the rotation axis z smaller by one order
of magnitude than the (quasi-degenerate) oscillation fre-
quencies in the x–y-plane. Furthermore, a configuration
with a single vortex can be produced in the experiment
in a reproducible way [1]. The single vortex configuration
in a cigar-shaped trap is the main object of the present
work.

Why is the single vortex cigar-shaped regime so in-
teresting? First the weak harmonic confinement along z
makes the system very different from previously studied
configurations. If the harmonic confinement along z was
stronger than in the x–y-plane the vortex configurations
would be similar to what happens in a 2D rotating Bose
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gas, a well studied limiting case [4–7]. If the harmonic con-
finement along z was absent, e.g. if the condensate was a
cylinder, one would face a situation typical of superfluid
helium II, a well studied subject [8].

But now the gas keeps its 3D character while being
spatially inhomogeneous along z. This has the amusing
consequence that a single vortex line has a tendency to
bend. First the steady state condensate can have a bent
vortex line, as shown numerically by a minimization of
the Gross-Pitaevskii energy functional in [9] and as ob-
tained also numerically with an approximate vortex line
energy functional in [10]. Second, even a condensate with
a straight vortex line has low energy Bogoliubov modes
corresponding to large fluctuations of the end points of
the vortex line [11,12] so that the vortex line can easily
bend in presence of thermal fluctuations.

After a presentation of the model considered in this ar-
ticle, see Section 2, we give a systematic numerical study
of the steady state bending as function of the trap as-
pect ratio, see Section 3, an analytic understanding of the
bending of the steady state vortex line in a cigar-shaped
trap, see Section 4, and the description of the finite tem-
perature fluctuations of the vortex line, see Section 5, in-
cluding a discussion of the effect of vortex line bending on
the experimental absorption images.



236 The European Physical Journal D

2 Model and basic assumptions

Let us consider an almost pure Bose-Einstein conden-
sate of N atoms confined in a trapping potential rotating
along axis z at angular velocity Ω. The thermodynami-
cally metastable equilibrium configurations of the system
correspond to local minima of the Gross-Pitaevskii energy
functional in the rotating frame [6]

E[φ, φ∗] =
∫

d3r
[
φ∗ (H0 −ΩLz)φ+

Ng

2
|φ|4

]
, (1)

where the condensate wave function φ obeys the normal-
ization condition

||φ||2 ≡ 〈φ|φ〉 =
∫

d3r |φ|2 = 1. (2)

The Hamiltonian operatorH0 in equation (1) contains the
kinetic and trapping potential terms

H0 = −�
2∇2

2m
+ U(r ) (3)

and Lz = −i�(x∂y − y∂x) is the angular momentum op-
erator along z. Here we will consider harmonic trapping
potentials U(r) with an adjustable slight anisotropic de-
formation in the x–y-plane:

U(r) =
1
2
mω2

⊥
[
(1 − ε)x2 + (1 + ε)y2

]
+

1
2
mω2

zz
2. (4)

For the choice of parameters we refer to the typical values
of the recent ENS experiments with 87Rb atoms (scatter-
ing length a = 100a0 � 5.29 × 10−9 m) [1]: total number
of atoms N = 1.4×105, axial frequency ωz = 2π×11.7 Hz
and anisotropy parameter ε � 1. In this paper the radial
frequency ω⊥ is varied in order to explore a wide range
of trap anisotropies: λ−1 ≡ ω⊥/ωz ∈ [1, 15]. In what fol-
lows energies and lengths are given in units of �ω⊥ and
a⊥ =

√
�/mω⊥ respectively, m being the atomic mass of

87Rb.

3 Local minima of energy: numerical results

In this section we discuss the method and the algo-
rithm employed to minimize numerically the energy func-
tional (1). Then we present the results obtained for the
stationary configurations with and without vortices in a
long cigar trap, and finally we discuss the existence do-
main for a single vortex configuration for several trap ge-
ometries.

3.1 Method

First of all, we reformulate the energy functional in or-
der to account more easily for the normalization con-
straint (2): we define φ = ψ/||ψ|| so that the value of
E can be obtained for condensate wave functions ψ with

a norm different from unity. This corresponds to dividing
the terms of E[ψ, ψ∗] quadratic in ψ by ||ψ||2, and the in-
teraction term quartic in ψ by ||ψ||4. The modified energy
functional reads

E[ψ, ψ∗] =
∫

d3r
ψ∗ [H0 −ΩLz]ψ

||ψ||2 +
Ng

2
|ψ|4
||ψ||4 · (5)

Then we discretize ψ on a three-dimensional grid with
periodic boundary conditions in position and in momen-
tum space. The number of grid points that we use ranges
from 64 to 256 for each lattice side, depending on the trap
geometry (a typical choice is 64 × 64 × 192 for long cigar
configurations and 96 × 96 × 64 for spherical geometries
with vortices). The minimization is performed by using
the conjugate gradient algorithm described in [13]. This
algorithm is in general much more efficient that the usual
steepest descent method (see Ref. [13] for a comprehen-
sive discussion). One ingredient of the conjugate gradient
method is a line minimization of the energy functional,
that is the minimization of E along the line ψ = ψ0+λδψ,
λ being a real parameter, where ψ0 is the current trial
wave function and δψ is the proposed direction (or gra-
dient) along which to move the trial wave function. An
important issue here is to find the first minimum encoun-
tered when moving downhill in energy along the line: if
the algorithm can jump to another minimum on the line,
corresponding for example to an energy valley with a dif-
ferent number of vortices, one gets wrong predictions, in
the sense that one does not fully explore the stability do-
main of a branch of solution with a given number of vor-
tices. This issue is usually not considered as important
in the textbook implementation of the conjugate gradient
method: e.g., in [13] the line minimization does not nec-
essarily find the first minimum. What we have done is to
use the fact that E is a rational function of λ so that it is
completely characterized by the coefficients of the mono-
mials in λ in the numerator and the denominator. We then
easily find the roots of dE/dλ and the first local minimum
of E encountered when one moves along the line downhill
in E starting from λ = 0. Afterwards we proceed with an-
other line minimization along a conjugate direction [13],
and so forth until we find a local minimum of the energy
functional (5) in the full configuration space spanned by
the wave function ψ. As convergence criterion we use

||Hgpψ − µψ|| < γµ||ψ|| (6)

where Hgp is the Gross-Pitaevskii Hamiltonian

Hgp ≡ H0 +Ng|ψ|2/||ψ||2 (7)

and µ is given by

µ =
∫

d3r
ψ∗Hgpψ

||ψ||2 (8)

which eventually converges to the chemical potential. The
parameter γ is a small parameter (∼ 10−8 ÷ 10−10) con-
trolling the quality of the convergence.
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Fig. 1. Energy per particle (top) and angular momentum per
particle 〈Lz〉 (bottom) as a function of the rotation frequency
Ω for various branches. Circles: starting from the Ω = 0 ground
state without vortices we reach configurations with 2 and 4 vor-
tices as we increase Ω. Triangles: configurations with one bent
vortex which decays into a 3 vortex (no vortex) state as we in-
crease (decrease) Ω. This branch is obtained by starting from
a trial wave function with quantized circulation of charge +1
for a value of Ω which can support a vortex state. See the text
for the value of the parameters. The energy is in units of �ω⊥
and 〈Lz〉 in units of �.

3.2 Results for a fixed trap geometry: case of a long
cigar

We start by considering a cigar shaped trap geometry typ-
ical of the ENS experiments in which vortex configura-
tions are nucleated [1,11]. In particular we set ε = 0.03
and ω⊥ = 2π × 174 Hz, giving λ−1 � 14.9. To explore
the configuration space we start from a trial wave func-
tion for a fixed value of the rotation frequency Ω until an
equilibrium configuration (i.e. a local minimum of the en-
ergy functional (5)) is found. Then we increase or decrease
slightly Ω, and then find the new local minimum. In this
way we can follow continuously branches of configurations
with or without vortices, depending on the rotation fre-
quency and on the path followed. In Figure 1 we show the
energy E and the angular momentum per particle 〈Lz〉
along the rotation axis of each configuration, as function
of the rotation frequency Ω, up to 4-vortex configurations.

We notice that, for this trap geometry, when a single
vortex appears (i.e. when it becomes a stable configura-
tion) it has immediately a lower energy than the 0-vortex
configuration, differently to what happens in 2D [6]. More-
over this vortex configuration is characterized by a bend-

ing of the core line, a phenomenon already obtained with a
different numerical technique in [9], and this accounts for
the fact that the angular momentum per particle 〈Lz〉 is
lower than � (〈Lz〉 is equal to � for a straight centered vor-
tex). To better investigate this aspect we have studied the
deformation of the vortex line as function of the rotating
frequency. If we start with a single vortex configuration
and we decrease the rotation frequency Ω the bending of
the core line becomes more pronounced, until we reach a
certain critical frequency Ω1 and the system jumps to the
0-vortex configuration. In the opposite direction, when Ω
increases, we find that the vortex line tends to become
more straight as expected (see Fig. 2), but then, whereas
a small bending is still present at the extremities of the
condensate, it “decays” into a three vortex configuration.
The value of Ω at which this happens defines a second
critical rotation frequency Ω2.

Therefore for the long cigar trap and the parameters
considered here, one never obtains a single, straight vor-
tex: when Ω is too large, other vortices come in. As we
will show in the following, this is due to destabilization
of high angular momentum surface modes [14], and cor-
responds to the fact that the single vortex configuration
ceases to be a local minimum of energy when the energy
of these modes becomes negative (i.e. there is at least one
direction along which the energy is going down in the func-
tional space). We discuss this effect in details in the next
subsection.

3.3 Destabilization of surface modes

We consider in this subsection the case of a cylindrically
symmetric trapping potential (with a vanishing asymme-
try parameter ε = 0) so that eigenstates of the N -body
Hamiltonian have a well defined angular momentum. The
expression for the energy El of an excitation mode of the
condensate with angular momentum �l in the rotating
frame is

El = �ω(l) − l�Ω, (9)

where ω(l) is the excitation energy of the same mode in
the laboratory frame [6]. This determines the rotation fre-
quency Ω̃l ≡ ω(l)/l at which the energy of such mode
becomes negative in the rotating frame. In particular the
minimum value over l of Ω̃l defines the Landau critical
rotation frequency Ω̃ at which the vortex becomes ther-
modynamically unstable due to destabilization of these
surface modes

Ω̃ = min
{l}

(
ω(l)
l

)
· (10)

The value Ω̃ can be estimated analytically by using the
sum rules approach which provides an estimate for ω(l),
as discussed in references [14,15]. In order to describe the
surface modes, we consider the excitation operators for
l 	= 0

F± =
N∑

k=1

(xk ± iyk)l. (11)
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Fig. 2. Density cuts in y–z-plane (vertical and horizontal axes
respectively) of a long cigar condensate (λ−1 = 14.9) with
a bent vortex, for three values of the rotation frequencies:
Ω/ω⊥ = 0.37, 0.44, 0.59 from top to bottom. Lengths are given
in unit of a⊥.

Then one defines the moments m±
p

m±
p ≡

∫ +∞

0

dE [S+(E) ± S−(E)]Ep (12)

where the strength distribution functions S± are given by

S±(E) ≡
∑

n

|〈n|F±|0〉|2δ(E − �ωn). (13)

The states |n〉 form a complete set of eigenstates of the
Hamiltonian operator H for our system of N interacting
particles confined by the trapping potential:

H =
N∑

k=1


 p2

k

2m
+ U(rk ) + g

k−1∑
j=1

δ(rj − rk)


 · (14)

Here we assume the two mode approximation, as dis-
cussed in reference [15]:

S±(E) = σδ(E − �ω±), (15)

where the two modes are equally weighted (they have the
same strength σ) due to the vanishing of the m−

0 momen-
tum [15]. This is justified by the fact that in the large N
limit the strength distributions are dominated by the
contribution of two modes with energy �ω± and angular
momentum ±�l excited respectively by the operators F±.
With this ansatz it is straightforward to obtain the rela-
tion between the frequencies ω± of such modes and the
first three moments in equation (12); in particular we have

δ ≡ ω+ − ω− =
m−

2

m+
1

(16)

ω̄2 ≡
(
ω+ + ω−

2

)2

=
m+

3

m+
1

− 3
4
δ2. (17)

Notice that only the mode with frequency ω+ = ω̄ + δ is
relevant to our discussion, since the energy of the mode
with angular momentum −�l increases for increasing ro-
tation frequency Ω, and can never become negative.

The next step is to calculate the moments m±
p from

equations (12, 13) by using closure relations and then ex-
plicitly evaluating the commutators

see equations (18–20) below

where 〈. . . 〉 stands for the expectation value in the
state |0〉. These expressions generalize those in [14] (case

m+
1 = 〈[F−, [H,F+]]〉 =

2N�
2

m
l2〈r2l−2

⊥ 〉 (18)

m−
2 = 〈[[F−,H ], [H,F+]]〉 =

4N�
3

m2
l2(l − 1)〈r2l−4

⊥ Lz〉 (19)

m+
3 = 〈[F−, H ], [H, [H,F+]]〉 =

2N�
4ω2

⊥
m

l3
�
〈r2l−2

⊥ 〉 +
l − 1

m2ω2
⊥

〈p+r
2l−2
⊥ p−〉 + 2�(l − 2)〈r2l−6

⊥ Lz〉 + 2(l − 2)〈r2l−6
⊥ L2

z〉/l
〈r2l−2

⊥ 〉

�
(20)
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Fig. 3. Curve ω(l)/l for a condensate in a long cigar trap
(λ−1 = 14.4, ε = 0) with (squares) and without (circles) a
straight vortex, as calculated with the sum rules approach (see
Eqs. (21, 22)). The minimum of ω(l)/l, which gives an estimate
for the rotation frequency Ω2, is compared with its correspond-
ing value found numerically for the 0-vortex (Ω0

2 , dot-dashed
line) and the 1-vortex (Ω2, dashed line) states, in presence of
a slight anisotropy (ε = 0.03). Frequencies are given in units
of ω⊥.

of a vortex free condensate) and in [15] (case of excitations
of l = 2 of a condensate with vortices). We note that the
use of p± ≡ px±ipy and r± ≡ x±iy rather than the Carte-
sian coordinates px, py, x, y, e.g. by writing the kinetic
energy as p+p−, considerably simplifies the calculations of
the commutators.

For the case of a straight vortex with charge q the key
quantities to be inserted in equations (16, 17) are

m−
2

m+
1

= 2q(l − 1)ω⊥

[
〈r2l−4

⊥ 〉
〈r2l−2

⊥ 〉

]
(21)

m+
3

m+
1

= ω2
⊥l

[
1 + (l − 1)

〈p+r
2l−4
⊥ p−〉

〈r2l−2
⊥ 〉

+
2q(l + q)(l − 2)(l − 1)

l

〈r2l−6
⊥ 〉

〈r2l−2
⊥ 〉

]
, (22)

where quantities within square brackets are expressed in
dimensionless units, as defined in Section 2.

In Figure 3 we plot the curve ω(l)/l for a cylindri-
cally symmetric trap (ε = 0), for the case q = 0 (ground
state without vortices) and q = +1 (straight vortex).
In the same figure we also indicate the critical frequen-
cies Ω0

2 and Ω2 which define the upper bound of the
existence domain respectively for states without vortices
and with a bent vortex, as found from the numerical
minimization of the energy functional in presence of a

slight anisotropy as considered in the previous subsection
(ε = 0.03). We notice that the sum rule prediction gives
a value of min (ω(l)/l) which is quite close to our numer-
ical result. This supports the statement that the surface
modes are indeed responsible for the destabilization of the
single-vortex state and the vortex-free state.

3.4 Effect of a ballistic expansion

In general, in the experiments, the condensate density
is imaged after a time-of-flight: the trapping potential is
switched off and the cloud expands freely for some time
before being imaged by the absorption of a laser beam.
This has the advantage of increasing the diameter of the
vortex core, making it larger than the optical wavelength.
Some theoretical work is however needed to relate the im-
ages obtained after the expansion to the density profile of
the initial trapped condensate.

To calculate the expansion of the condensate after the
release from the trap, we propagate the initial wavefunc-
tion according to the full 3D Gross-Pitaevskii equation
in real time after having abruptly switched off the trap-
ping potential, and after having performed the scaling and
gauge transform of [16,17]. In terms of the rescaled spa-
tial coordinates r̃i ≡ ri/λi(t), the modified wave function
ψ̃(r̃, t) satisfies the equation

i∂tψ̃(r̃, t) =


− �

2

2m

∑
j

1
λ2

j

∂2
r̃j

+
1∏
j λj

(
U(r̃) + g|ψ̃|2 − µ

)]
ψ̃(r̃, t) (23)

and the scaling parameters λj(t) are solutions of [16]

λ̈j =
ω2

j (0)
λjλ1λ2λ3

(24)

with initial values equal to unity and with vanishing ini-
tial derivatives. The use of these scaling equations allows
us to calculate numerically the expansion of any vortex
configuration by using the same grid as the one used for
the stationary trapped state as most of the evolution of
ψ due to the ballistic expansion is absorbed by the scal-
ing and gauge transform. In a 2D model with an axially
symmetric trapping potential the net effect of the ballistic
expansion on the density corresponds exactly to a scaling
transformation and a finite angle rotation of the conden-
sate eigenaxes [6]. Here we expect this property to remain
approximately true as the condensate is very elongated
along z and expands much more rapidly radially than ax-
ially.

A first application of this calculation is the analysis of
the column density of the condensate, that is the density
integrated along z, after ballistic expansion. There is in-
deed an important issue concerning the mechanisms which
are responsible for the reduction of contrast for the vortex



240 The European Physical Journal D

Fig. 4. Column density before ballistic expansion (integrated
density along the axial direction) along the y-axis where
the vortex bends, for the three cases in Figure 2: Ω/ω⊥ =
0.37, 0.44, 0.59. This picture evidences that the contribution of
the vortex line bending to the contrast can be relevant even at
zero temperature.

Fig. 5. Comparison of the column density for a bent vortex
(Ω = 0.59ω⊥) before and after the release from the trap (time
of flight ∼ 30 ms), as a function of the rescaled ỹ-coordinate.
The expansion has no relevant effects on the contrast (we have
verified that this holds also for the other configurations shown
in Fig. 2).

configurations which are observed in the experiments [1].
As pointed out already in [9], in the case of a bent vortex
before ballistic expansion, an important contribution can
arise due to the bending itself, as shown in Figure 4. In
this picture we plot a cut of the column density along the
y-axis where the vortex bends, for three values of the ro-
tation frequency Ω. In Figure 5 we compare the column
density for a bent vortex at Ω = 0.59ω⊥, before and after
the release from the trap (time of flight ∼ 30 ms). The
y-coordinate is given in rescaled units ỹ ≡ y/λ2(t). From
this figure we can see that the expansion has no relevant

Fig. 6. Shape of the vortex line (with initial rotation frequency
Ω = 0.37ω⊥) before and after release from the trap (time of
flight te ∼ 30 ms), as a function of the rescaled coordinates
in units of a⊥ and after projection on the vertical planes at
an angle θ(0) = −π/2 and θ(te) = −1.14 rad with x-axis,
respectively.

effects on the contrast; the same result holds also for the
other configurations shown in Figure 2.

A second application is the analysis of the shape of
the vortex line after ballistic expansion. This is also an
important issue, as the shape of the vortex line can be
measured using transverse absorption imaging rather than
axial absorption imaging [18]. Focusing on the configura-
tion Ω = 0.37ω⊥ exhibiting the strongest bending, we
have calculated the shape of the vortex line before and af-
ter expansion by looking in each horizontal plane for the
local minimum of density closest to the vertical axis z. Ini-
tially the vortex line is contained in the half plane (−y)z
which is at an angle θ(0) = −π/2 with respect to x-axis.
After a time te � 30 ms of ballistic expansion, we find
that the vortex line remains almost planar, but in a verti-
cal half plane at an angle θ(te) � −1.14 rad with respect
to x-axis, and not passing through the origin. We show in
Figure 6 the vortex line before and after expansion, pro-
jected in the vertical planes in which it is contained at
t = 0 and t = te. One then sees that the vortex line essen-
tially preserves its initial shape after time of flight, in the
frame of the rescaled spatial coordinates.

3.5 Existence domain of a single vortex configuration

In the last part of this section we discuss the thermo-
dynamic existence domain of a single vortex configura-
tion, that is the domain where it is a local minimum of
energy. By varying the radial frequency ω⊥ we have ex-
plored a wide region of trap geometries, ranging from the
spherical case to long cigar traps (λ−1 ∈ [1, 15]). In Fig-
ure 7 we show this domain in the ω⊥/ωz − Ω/ω⊥ plane.
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Fig. 7. Phase diagram for the existence domain of a single
vortex as a local minimum of energy in an almost cylindri-
cally symmetric trap. For a given λ, thermodynamically stable
configurations lie in the interval [Ω1, Ω2]. The Bogoliubov pre-
dictions from Ω1 and Ω2 (triangles) correspond to a straight
vortex. In the conjugate gradient minimization (disks) the
bending of the vortex line is allowed and the stability domain
is enhanced.

Here we consider an almost axially symmetric trap, with
a very small asymmetry (ε = 10−4), which fixes the direc-
tion along which the vortex bends. By minimizing numeri-
cally the energy functional (1) with the conjugate gradient
method we find that thermodynamically stable configura-
tions with one vortex lie in the interval between the lines
with empty and full circles, representing respectively Ω1

and Ω2. The black squares represent the predictions of
the sum rules, which give a good estimate for Ω2, as dis-
cussed in Section 3.3. In the same picture we also show
the results from the Bogoliubov approach for a straight
vortex, as described in Section 5. Up-triangles correspond
to the critical rotation frequency which stabilize a straight
vortex (Ω1); this line separates the existence domains for
straight and bent vortices. Down-triangles correspond to
the frequency at which the straight vortex is no longer
thermodynamically stable due to the destabilization of the
surface modes (Ω2). Notice that these values are in very
good agreement with the result of the conjugate gradient
in the whole range of existence of the straight vortex.

Finally, the solid line represents a 2D ansatz based on
the analytical model in reference [6], as described in the
next section. If we imagine our 3D condensate as a collec-
tion of 2D slices, we can suppose that the 3D vortex is a
stable configuration (i.e. the vortex line remains close to
z-axis and does not get away) if the rotation frequency Ω
at least exceeds the 2D critical rotation frequency Ω2D

c at
which a 2D vortex in the central slice (z = 0) becomes
energetically favorable with respect to the solution with-
out vortices, that is: Ω > Ω2D

c (z = 0). The expression

for Ω2D
c , which will be derived in the next section, is

Ω̃2D
c =

1
µ̃

ln (C′ (µ̃+ η)) (25)

where the tilde indicates rescaling by ω⊥, e.g. µ̃ ≡ µ/�ω⊥,
C′ � 1.8011, and η = 1.9378. Then, by expressing µ̃ in
terms of λ = ωz/ω⊥ in the Thomas-Fermi approximation:

µ̃ =
1
2

(
15N

a

az

)2/5

λ1/5 � 13.1λ1/5 (26)

we have

Ω̃2D
c =

b

λ1/5
ln

(
cλ1/5 + d

)
(27)

with b � 0.0763, c � 23.6 and d � 3.49. As we can see
from Figure 7 this simple ansatz gives a good estimate of
the critical frequency Ω1. This ansatz will be justified in
the next section.

4 Understanding the bending of the vortex
line analytically

The numerical results of the previous section show that
the vortex line in a steady state configuration is not nec-
essarily straight when the condensate is cigar shaped along
the rotation axis z, in accordance with previous numeri-
cal results based on a different algorithm [9]. This how-
ever does not explain physically why the vortex bends.
To get the required physical understanding we derive an
approximate energy functional for the vortex line in the
Thomas-Fermi limit in the spirit of [10], and we minimize
this energy functional with a simple variational ansatz.
We reach a very simple prediction for the minimal rota-
tion frequency required to stabilize a bent vortex, which
is in good agreement with the full numerics when the con-
densate is cigar-shaped.

4.1 Deriving a simple energy functional

We restrict in what follows to the interesting regime of a
cigar shaped condensate, where ωz � ω⊥. The first step
is to transform the Gross-Pitaevskii energy functional (1)
into a functional of the shape of the vortex line only.
This assumes that both the modulus and the phase of
the condensate wavefunction φ can be expressed in terms
of the shape of the vortex line only. This is in general a
formidable task, as the condensate density is not uniform
in a harmonic potential [19], but it is greatly simplified
if we restrict to the Thomas-Fermi limit µ 
 �ω⊥. We
present a rather detailed and pedestrian derivation in Ap-
pendix A, we give here only the main ideas.

In the Thomas-Fermi regime there is a clear sepa-
ration of spatial scales between the vortex core radius,
of the order of the healing length ξ = (�2/mµ)1/2, and
the transverse Thomas-Fermi radius of the condensate
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R⊥ = (2µ/mω2
⊥)1/2, where µ is the chemical potential

of the gas. The total density can then be written as the
product of a slowly varying envelope function and of a
narrow “hole” function defining the vortex core [4,6]. We
further assume that the rotation frequency Ω is of the or-
der of �ω2

⊥/µ. As a consequence the rotational velocity
term Ω∧ r, at most of the order of ΩR⊥, is much smaller
than the typical velocity field in the lab frame at a dis-
tance ξ from the vortex core, v ∼ �/mξ, in the Thomas-
Fermi limit, so that the structure of the vortex line is not
distorted by rotation. Another consequence is that the en-
velope function is also not destabilized by the rotation [20]
and is close to the usual Thomas-Fermi expression.

Expressing the phase of the condensate as function of
the vortex line is made difficult by the spatial inhomo-
geneity of the density profile of the condensate [19]. In
principle this phase has to be determined everywhere in
the condensate if one wants to calculate the kinetic energy
term of (1). Fortunately, using the fact that the condensate
is in a steady state, one can replace the volume integral
giving the kinetic energy stored in the condensate phase
by a line integral along the vortex line, using the same
type of techniques as in [10]. It is then possible to rely
on approximations for the condensate phase valid close
to the vortex line. We use in Appendix A the simplifying
hypothesis that the vortex line is weakly curved, with a
radius of curvature of the order of R⊥ or larger, which
allows to approximate the condensate phase close to the
vortex line by the one of a straight vortex.

We finally obtain the following energy functional of
the vortex line, taking the vortex free configuration as the
zero of energy:

Ev �
∫

ds
g2D(z0(s))

g

[
EΩ=0

2D (r0⊥(s); z0(s))

+ cos(α(s))Erot
2D (r0⊥(s); z0(s))

]
. (28)

In this expression the vortex line is parametrized by the
curvilinear abscissa s. At the point of abscissa s the vortex
line is at the elevation z0(s) and at a distance r0⊥(s) from
the rotation axis, and makes an angle α(s) with respect
to z. A remarkable feature of (28) is that it is expressed
in terms of the energy functionals of a vortex core in a 2D
condensate, EΩ=0

2D for the energy in the absence of rotation
and Erot

2D for the energy due to the −ΩLz term. This is
physically plausible considering the cigar shaped nature
of the condensate, and this allows to view the 3D con-
densate as a collection of 2D horizontal slices. The slice
of elevation z constitutes a 2D Bose condensate with a
chemical potential µ−mω2

zz
2/2, where µ is the chemical

potential of the 3D condensate, and has a Thomas-Fermi
radius coinciding with the local 3D one. The coupling con-
stant g2D(z) of the 2D gas can be expressed in terms of the
3D coupling constant, see (A.58). We arrive at the simple
formula

g2D(z)
g

=
15

16Rz

(
1 − z2

R2
z

)2

(29)

where Rz is the Thomas-Fermi radius of the condensate
along z. An interesting remark is that the rotational en-

ergy term in (28) is multiplied by cosα(s). As Erot
2D is

proportional to the rotation frequency Ω, this means that
cosα(s)Erot

2D is the rotational energy of a vortex core in a
2D condensate rotating at the effective frequency

Ω2D(s) = Ω cosα(s). (30)

4.2 Minimizing numerically the simple energy
functional

In a first stage we have to check that the energy func-
tional derived in Appendix 6 correctly reproduces the re-
sults of the minimization of the full Gross-Pitaevskii en-
ergy functional. We perform this check numerically: we
discretize the vortex line in little segments having all the
same length dl much smaller than the transverse Thomas-
Fermi radius R⊥ of the condensate. As the vortex line
is symmetric with respect to z reflexion and lies in the
xz-plane, the left extremity of the first segment in the
calculation moves along x-axis only, with an abscissa x0.
The z > 0 part of the vortex line is discretized in k seg-
ments and its shape is parametrized by the angles αi,
i = 1, . . . , k at which the k segments are with respect
to the axis z. The energy functional (28) in its discretized
version is then a function of k + 1 coordinates, that is of
x0 and of the k angles αi. Starting with a straight vortex
line at some small angle with respect to z-axis we move
x0 and the αi’s according to the simple gradient method
or imaginary time evolution method, that is we move the
parameters by a small step in the direction opposite to
the local gradient of the energy functional.

It is known that this simple gradient method is not
efficient when the desired minima are at the bottom of a
very elongated valley in the coordinate space [13]. This
potential problem is minimized by a rescaling of the coor-
dinates by their natural units xtyp

0 = R⊥ and αtyp = 2π,
so that our specific algorithm is to iterate the following
small coordinate changes

dx0 = −dτ
(
xtyp

0

)2
∂x0Ev/E

typ
v (31)

dαi = −dτ
(
αtyp

)2
∂αiEv/E

typ
v (32)

where the typical energy scale is Etyp
v = �

2ω2
⊥/µ and the

dimensionless “time” step dτ is small as compared to unity
(typically 0.1). The iteration stops when |dx0|/(dτxtyp

0 )
and |dαi|/(dταtyp) are below some threshold, taken here
to be 10−6.

The resulting prediction for the minimum rotation fre-
quency required to stabilize the vortex line is shown in
Figure 8, deliberately restricted to the domain of cigar
shaped condensates. The agreement with the minimiza-
tion of the full Gross-Pitaevskii energy functional is re-
markable, considering the fact that the points of Figure 8
are moderately in the Thomas-Fermi regime (µ ∼ 7.6�ω⊥
for ω⊥/ωz = 15).
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Fig. 8. Minimal rotation frequency required to stabilize a vor-
tex in a cigar-shaped condensate, as function of λ−1 = ω⊥/ωz.
The parameters are given in the last paragraph of Section 2.
Disks with error bars: minimization of the full Gross-Pitaevskii
energy functional. Squares: minimization of the approximate
vortex line energy functional, based on the 2D η-modified en-
ergy functional (A.66) and a discretization of the z > 0 part
of the vortex line in k = 256 segments. Solid line: analytical
estimate of Section 4.3.

4.3 Why the vortex line bends in a cigar shaped
condensate

The actual goal of this section is to understand physically
why the vortex line bends in a cigar shaped condensate.
This can be achieved intuitively thanks to the very sug-
gestive form of the energy functional (28). One just needs
to have in mind the following characteristics of the 2D
vortex problem:

• if the effective rotation frequency Ω2D is too small the
2D energy functional has a maximum for the vortex
core at the center of the trap and is a purely repulsive
potential, see the dotted line in Figure 9: the vortex
core cannot be stabilized inside the condensate and its
equilibrium position is at infinity;

• if Ω2D is above the stabilization frequency Ω2D
stab and

below the critical rotation frequency Ω2D
c , the 2D en-

ergy functional has a local but not global minimum for
the vortex core at the center of the trap (dashed line
in Fig. 9). In this situation, the vortex core is stabi-
lized at the trap center with an energy larger than the
vortex free condensate;

• for Ω2D > Ω2D
c , the energy minimum at the trap center

is now below the energy of the vortex free configuration
(solid line in Fig. 9).

The important feature of the 2D case is that the equi-
librium positions of the vortex core are either the trap
center or the infinity. Another point, crucial for the 3D
case, is that both Ω2D

stab and Ω2D
c are decreasing functions

of the chemical potential µ2D.
Let us now follow the vortex line travelling through

the 3D cigar shaped condensate, in the case where the
2D critical rotation frequency in the central slice z = 0
is smaller than the actual rotation frequency Ω. Let us

Fig. 9. Energy of a single vortex in a 2D Thomas-Fermi con-
densate in a harmonic trap mω2

⊥(x2 + y2)/2 rotating at fre-
quency Ω, as function of the distance of the vortex core to the
trap center, for a chemical potential µ2D = 10�ω⊥. Dotted line:
Ω = 0.1ω⊥. Dashed line: Ω = 0.25ω⊥. Solid line: Ω = 0.35ω⊥.
The values of the stabilization and critical rotation frequencies
defined in the text, see (A.70) and (A.68), are Ω2D

stab � 0.170ω⊥
and Ω2D

c � 0.306ω⊥. The energy is in units of �2ω2
⊥/µ2D where

µ2D is the chemical potential of the 2D gas, and is calculated
from the approximate formulas (A.64–A.66). The distance is
in units of the Thomas-Fermi radius of the 2D condensate.

call zc the elevation of the 2D slice with a local critical
frequency Ω2D

c equal to Ω, see Figure 10a.
It is clear that the vortex line will be straight along the

rotation axis for |z| < zc: the vortex line is there in a val-
ley corresponding to the global minimum of energy of each
local 2D slice. When the vortex line reaches the domain of
elevation z > zc, having a vortex core on the rotation axis
costs more energy than having the vortex core at infinity
in each local 2D slice. The tempting strategy then offered
to the vortex line is to bend and leave the condensate. As-
sume that the vortex line leaves the condensate radially, as
shown in Figure 10a. The corresponding horizontal vortex
line has an energy

Ehoriz
v =

g2D(zc)
g

∫ +∞

0

dxEΩ=0
2D (x; zc). (33)

The corresponding integral can be calculated exactly, but
it is sufficient to give here an order of magnitude: g2D/g
scales as 1/Rz, EΩ=0

2D is of the order of �
2ω2

⊥/µ2D and
the integral over x converges over a distance given by the
Thomas-Fermi radius R⊥, so that

Ehoriz
v ∼ R⊥

Rz

(�ω⊥)2

µ

(
1 − zc

Rz

)3/2

· (34)

We have included some approximate zc dependence rele-
vant for the extreme case of zc close to Rz. What would be
the energy cost for the vortex line to remain on the rota-
tion axis from zc to Rz? The energy of the corresponding
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Fig. 10. The two C-shaped ansatz used in this paper for the
vortex line in a cigar-shaped condensate in a trap rotating at
frequency Ω. (a) The vortex line (thick solid line) is on the
rotation axis for an elevation in between −zc and zc, otherwise
goes to infinity horizontally; zc is the positive elevation of the
2D slice having a critical rotation frequency Ω2D

c equal to Ω.
(b) The C shape is at a distance X to the rotation axis and
has a total height 2Z; X and Z are determined variationally.

vertical segment is

Evert
v =

∫ Rz

zc

dz
g2D(z)
g

[
EΩ=0

2D (0; z) + Erot
2D (0; z)

]

=
15

16Rz

∫ Rz

zc

dz
(

1 − z2

R2
z

)2 [
�Ω2D

c (z) − �Ω2D
c (zc)

]
(35)

where we have used the fact that the 2D rotational en-
ergy of a vortex core in the center of a trap rotating at
frequency Ω is −�Ω, also equal to −�Ω2D

c (zc) by defini-
tion of zc. The integrand has the same order of magnitude
as in Ehoriz

v but the integration length is now of the order
of Rz so that

Evert
v ∼ �

2ω2
⊥

µ

(
1 − zc

Rz

)2

(36)

is typically Rz/R⊥ times larger than Ehoriz
v . This proves

that in the limit of a cigar-shaped condensate Rz 
 R⊥,
the strategy of bending is more favorable than the strategy
of following the rotation axis, except for a zc very close to
the end point of the condensate, 1− zc/Rz ∼ R2

⊥/Rz that
is Ω ∼ (�2ω2

⊥/µ)(Rz/R⊥)2.
The bending at the value zc in the above reasoning can

be justified variationally as follows. We perform a sim-
ple minimization of the energy functional (28) with the
following linear piecewise variational ansatz for the vor-
tex line in the plane y = 0: an horizontal line linking
(x = +∞, z = −Z) to (x = 0, z = −Z), then a verti-
cal segment of length 2Z along the rotation axis, then an
horizontal line from (x = 0, z = Z) to (x = +∞, z = Z).
The energy of the ansatz depends on the single variational
parameter Z:

Eans
v (Z) = Esegm

v (Z) + Eline
v (Z) (37)

that is the sum of the energies of the vertical segment and
of the horizontal lines. One has to extremize this function
over Z. In the case where the extremum is in the interior
of the interval (0, Rz), one has to solve

d
dZ

Eans
v = 0. (38)

This non-trivial task becomes simple in the limit of a
very elongated condensate along z [21]. As shown in Ap-
pendix A, the vortex 2D energy function EΩ=0

2D (r⊥; z) de-
pends on r⊥ only via the ratio r⊥/R⊥(z) where R⊥(z) is
the local Thomas-Fermi radius. As a consequence Eline

v (Z)
depends on Z through Z/Rz only, and its derivative is
R⊥/Rz times smaller than the derivative of Esegm

v (Z).
In the limit Rz/R⊥ tending to infinity, equation (38) re-
duces to

d
dZ

Esegm
v (Z) = 0. (39)

Using the explicit expression of Esegm
v (Z) similar to (35)

we obtain the condition

Ω2D
c (Z) = Ω (40)

that is Z = zc, the vortex starts bending at the elevation
where the 2D critical rotation frequency equals the trap
rotation frequency Ω. As a consequence the minimal rota-
tion frequency to stabilize the bent vortex line is given in
the ωz/ω⊥ → 0 limit by the 2D critical frequency in the
central slice z = 0, see (A.68):

Ω1 =
�ω2

⊥
µ

log
[
eC+1/2

(
µ

�ω⊥
+ η

)]
(41)

with η � 1.938 and C � 0.0884. This asymptotic pre-
diction is plotted as a solid line in Figure 8 and is in
good agreement both with the numerical minimization
of the vortex energy functional and with the numeri-
cal minimization of the full Gross-Pitaevskii energy func-
tional [22].

To conclude this subsection we point out two striking
properties of the result (41). Firstly, it explains why in a
cigar-shaped condensate, the bent vortex is first stabilized
with an almost vanishing energy gap with respect to the 0-
vortex configuration, at least much smaller than �

2ω2
⊥/µ,

see Figure 1: at Ω = Ω1, the variational ansatz predicts an
energy scaling as (�2ω2

⊥/µ)R⊥/Rz, see the expression for
Ehoriz

v with zc/Rz � 0. This is very different from the 2D
case, where the vortex, when first stabilized, has a large
and positive energy ∼ �

2ω2
⊥/µ with respect to the vortex

free configuration. Secondly, it is remarkable that the 2D
stabilization frequency plays no role in the 3D case for
the cigar-shaped condensate. This means that being a lo-
cal minimum of energy in 2D slices does not imply that
the vortex line is a local minimum of energy in 3D. As
an example, it is possible in 3D to shorten the vertical
segment of the vortex line, that is to introduce the bend-
ing at a slightly lower elevation, whereas this infinitesimal
transformation has no equivalent in a purely 2D case.
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4.4 Saddle points of the simple energy functional

Using a simple energy functional rather than the full
Gross-Pitaevskii energy functional has allowed to under-
stand the bending of the vortex line physically with the
help of a simple piecewise variational ansatz. But much
more can be done: as we now show, one can investigate
not only the energy minimum but also possible saddle
points of the energy functional. This will explain an in-
triguing feature of the numerical results of Figure 1: the
angular momentum of the condensate has a discontinuous
jump from the one-vortex branch to the no-vortex branch,
which opens a gap in the allowed values of 〈Lz〉.

The idea is to consider now a more general ansatz for
the vortex line than the one of the previous subsection, in
order to allow the vortex line to move towards the bor-
der of the condensate. We introduce the two parameter
linear piecewise ansatz in the y = 0 plane shown in Fig-
ure 10b: a horizontal line linking (x = +∞, z = −Z) to
(x = X, z = −Z), then a vertical segment of length 2Z
parallel to z, and finally a horizontal line from (x = X, z =
Z) to (x = +∞, z = Z). In other words, the vortex line
has a C shape of adjustable distance X to the rotation
axis and adjustable height 2Z.

We consider the parameters of the ENS experiment,
with λ = ωz/ω⊥ = 1/15. Equation (26) leads to a
Thomas-Fermi chemical potential of µ = 7.62�ω⊥. We
choose a rotation frequency Ω = 0.448ω⊥, which is a fac-
tor 1.2 above the threshold value Ω1 of (41). Figure 11
shows a contour plot of the simple energy functional as
function of the coordinates (X,Z) of the bending point of
the vortex line. One recognizes first the global minimum of
energy, marked with a M, with a position of the C shaped
vortex line similar to the one of Figure 10a: the vertical
part of the vortex line is very close to the rotation axis,
with X less than 0.05 times the transverse Thomas-Fermi
radius R⊥. Second, one finds a saddle point in the energy,
marked with a S, corresponding to a quite different posi-
tion of the C shape: the vortex line is now far from the
rotation axis, with X ∼ 0.45R⊥, and the half elevation of
the C shape is of the order of R⊥.

What is the physical meaning of this saddle point? As
it corresponds to an extremum of the energy functional
(vanishing first order derivatives of the functional), it rep-
resents a stationary shape for the vortex line in the ro-
tating frame. In addition to this dynamic property, it has
the following interesting energetic aspect: it corresponds
to an energy minimum for a fixed value of the angular
momentum per particle 〈Lz〉, as one can check explicitly
for the two-parameter ansatz.

These properties are not specific to the two-parameter
ansatz. They apply for arbitrary shapes of the vortex line,
but also for the exact Gross-Pitaevskii energy functional.
Consider indeed the subspace of condensate wavefunctions
with a fixed angular momentum per particle lz. The Gross-
Pitaevskii energy functional in the absence of rotational
term −ΩLz is bounded from below (for g > 0) in this
subspace so it has a minimum for some wavefunction ψlz ,
with an energy EΩ=0(lz). One can then show that the
wavefunction ψlz is a stationary point for the full Gross-

Fig. 11. For the two parameter linear piecewise ansatz for the
vortex line shape, contour plot of the simple energy functional
as function of the coordinates (X,Z) of the bending point of
the line. The trap aspect ratio is λ = ωz/ω⊥ = 1/15, leading to
a Thomas-Fermi chemical potential µ = 7.62�ω⊥. The rotation
frequency is Ω = 0.448ω⊥ � 1.2Ω1. X and Z are expressed in
units of the transverse Thomas-Fermi radius R⊥ of the conden-
sate. The contour plot is restricted to a bending point inside
the Thomas-Fermi profile of the condensate, X2 +λ2Z2 < R2

⊥.
The global minimum is marked with the letter M, and the sad-
dle point is marked with the letter S. The elliptic isocontours
close to the Thomas-Fermi border correspond to a maximum
of energy.

Pitaevskii energy functional, that is including the rota-
tional energy term −ΩLz, without imposing a fixed the
angular momentum, provided that one takes the rotation
frequency equal to Ω = dEΩ=0/dlz. One can show that it
is however not necessarily a minimum of the full energy
functional: it is a minimum if

dΩ
dlz

≡ d2EΩ=0

dl2z
> 0 (42)

otherwise it is a saddle point.
We can exemplify these properties with our simple two-

parameter ansatz. We have plotted in Figure 12 the mean
angular momentum per particle of the energy minimum
and of the saddle point as function of the rotation fre-
quency Ω. One finds that the branch of minimum has an
angular momentum ranging from 0.42� to �, whereas the
branch of saddle point fills the gap of angular momentum
from 0 to 0.42�. One also finds that the angular momen-
tum is an increasing function of the rotation frequency on
the branch of minimum, whereas it is a decreasing func-
tion of Ω on the saddle point branch, in accordance with
the general condition (42).

In an experiment where the angular momentum of the
condensate is gradually decreased, starting from a value
close to �, the vortex first follows the minimum energy
branch: the distance of the vortex line to the rotation
axis X remains much smaller than R⊥, whereas the vor-
tex half-height Z and the rotation frequency Ω of the
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Fig. 12. For the two-parameter ansatz and the simple energy
functional for the bent vortex line, mean angular momentum
per particle for the energy minimum (solid line) and the energy
saddle point (dashed line) as function of the rotation frequency
Ω. The trap aspect ratio is λ = 1/15 and the chemical poten-
tial is µ = 7.62�ω⊥. The points marked with M and S corre-
spond to the rotation frequency of Figure 11. The vertical line
corresponds to the analytical prediction for Ω1. The rotation
frequencies are in units of ω⊥ and the angular momentum is
in units of �.

line in the lab frame decrease with time. Then the an-
gular momentum reaches a critical value: the minimum in
the (X,Z) parameter space merges with the saddle point.
When the angular momentum is further decreased, the
vortex line follows the saddle point branch: the distance
X increases and becomes of the order of R⊥, as the vortex
moves towards the boundary of the condensate; Z takes
values as small as R⊥, in which case the validity of our
simple analytical approach becomes marginal, and the ro-
tation frequency of the vortex line increases. This scenario
was very recently observed at ENS [18].

To conclude this subsection, we can emphasize again
the analogy of the 3D bent vortex problem and the 2D sin-
gle vortex problem. In 2D, the minimum of energy in the
rotating frame with no constraint on the angular momen-
tum corresponds to the vortex at the trap center, with an
angular momentum �, or to the vortex at infinity with a
vanishing angular momentum. If one minimizes the energy
for a fixed angular momentum lz, one finds an off-center
vortex core, shifting from the trap center to infinity as lz
is varied from � downto zero; these off-center solutions do
not satisfy the criterion (42) [5] and are very analogous to
our saddle point solutions.

5 Finite temperature fluctuations
of an otherwise straight vortex line

5.1 Method: Bogoliubov approach around the straight
vortex steady state

In order to evaluate the contribution of thermal fluctu-
ations on the contrast, we study the limiting case of a

straight vortex. For the ENS trap parameters, this means
that 1/λ < 7 and in all the following, we illustrate our
discussion using the case (λ = 1/5, Ω = 0.5ω⊥). In this
regime, the system has a rotational symmetry around the
z-axis so that the numerical problem is effectively 2D in
cylindrical coordinates. We use the U(1)-symmetry pre-
serving Bogoliubov approach described in [23]. In this way,
the problem of the spurious mode of the condensate is
avoided. The Bose field is expanded as

ψ̂(r) = φ(r)âφ + Âφ

∑
k

b̂kuk(r) + b̂†kv
∗
k(r). (43)

φ is the condensate wave function normalized to unity.
The operator âφ is the annihilation operator in the con-
densate mode and the almost unitary operator Âφ =
(â†φâφ + 1)−1/2âφ gives the phase factor of the field in
the condensate mode [24,25]. The modal functions uk, vk

are normalized like
∫

d3r |uk|2 − |vk|2 = 1. They are ob-
tained from the usual modal functions of the Bogoliubov-
de Gennes equations after orthogonalization of uk and of
vk with respect to φ. The Bose operators b̂k annihilate
one quasi-particle in the mode k but conserve the total
number of particles. The index k = {n, l, s} denotes the
quantum numbers of the mode linked to the symmetry
of the system: s = 1 (or −1) for symmetric (or antisym-
metric) modes with respect to the plane z = 0, l� is the
angular momentum with respect to the condensate and
the integer n is the radial quantum number.

Concerning the transverse direction x–y, we expand
φ, uk, vk on the harmonic oscillator basis

{
Φm′,n′

ho

}
of pul-

sation ω⊥ (m′
� is the angular momentum and n′, the ra-

dial quantum number). For example, in this basis we have

φ(r ) =
∞∑

n′=0

cn′(z)Φm=1,n′
ho (x, y) . (44)

Numerically, the basis is truncated: the spatial grid along z
is surrounded by infinite walls, and also the number of
wave functions Φm′,n′

ho is limited (for the value λ = 1/5, the
harmonic oscillator basis in our computation contains all
the wave functions of energy less than 42�ω⊥). The choice
of the grid and the discretization of the Laplacian along z
has been made so that the first 160 energy levels εn of the
pure 1D harmonic oscillator are recovered with an error
|εn − εexact

n | < 10−2. In this part we have computed the
condensate wave function using an imaginary time method
and the convergence criterion (6) (typical values of γ are
of the order of 10−13).

5.2 Expectation values of some observables

The mean density of atoms out of the condensate is ob-
tained straightforwardly with the usual expression

ρexc(r ) =
∑

k

|vk|2(r ) +
∑

k

nk

(|uk|2(r ) + |vk|2(r )
)
,

(45)
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Fig. 13. Mean column density 〈n〉 associated to the param-
eters (λ = 1/5, Ω = 0.5ω⊥), as function of the distance r to
the rotation axis. The temperature T ranges from 0 to 0.4Tc

in steps of 0.05Tc, from bottom to top. r is in units of the har-
monic oscillator length a⊥ = (�/mω⊥)1/2 and 〈n〉 is in units of
Na−2

⊥ = Nmω⊥/�. The number of particles is N = 1.4 × 105

and the chemical potential is µ � 9.87�ω⊥. The inset is a mag-
nification.

where

nk = 1/(exp (εk/kBT ) − 1) (46)

is the Bose occupation factor and εk is the energy of
the Bogoliubov mode k in the rotating frame. Because
of numerical constraints we have limited the sum over
states of energy less than 20�ω⊥ in the rotating frame,
and we have studied configurations with temperatures less
than 11.4�ω⊥/kB that is less than 0.4Tc, where kBTc =
�

(
ωzω

2
⊥N/ζ(3)

)1/3
is the ideal Bose gas critical tempera-

ture. For comparison with experimental results, we extract
the mean column density 〈n〉 in the x–y-plane:

〈n〉(x, y) =
∫
dz

[
(N − 〈Nexc〉)|φ|2(r ) + ρexc(r )

]
, (47)

where 〈Nexc〉 =
∫

d3rρexc(r ) is the mean number of atoms
out of the condensate. We plot this column density as
function of the distance to the z-axis for different values
of the temperature in Figure 13. At zero temperature the
effect of quantum depletion at the center of the vortex line
is not observable on the scale of the figure. Hence quantum
fluctuations of the vortex line are clearly not responsible
for the low contrast measured in ENS experiments.

To be more quantitative, we denote 〈n〉min the value
of the mean column density at the center of the trap and
〈n〉max the maximal value of the mean column density.
Then, the mean contrast is defined as

C = 1 − 〈n〉min

〈n〉max
· (48)

Fig. 14. Dependence of the mean contrast C = 1 −
〈n〉min/〈n〉max with the temperature for the same parameters
as in Figure 13.

The modal functions are of the form

uk(r ) = Uk(r, z) exp [i(l + 1)θ] (49)
vk(r ) = Vk(r, z) exp [i(l − 1)θ] , (50)

If l + 1 	= 0 the function Uk vanishes in r = 0 because of
the centrifugal barrier. For the same reason Vk(r = 0, z)
vanishes for l− 1 	= 0. As a consequence only modes with
l = ±1 contribute to 〈n〉min. Furthermore, in the rotating
frame the energy of the quasi-particles is given by equa-
tion (9) and the most populated modes are the lowest
energy kelvons, characterized by l = −1, which have a
negative energy in the absence of rotation [12,11]. In the
example presented in this section, the lowest kelvon mode
localized at the extremities of the condensate has an en-
ergy in the rotating frame given by E � 0.018�ω⊥. Fig-
ure 14 shows that the dependence of C as a function of
temperature is almost linear. This behavior can be under-
stood from the fact that the lowest energy modes have a
semi-classical character (εk � kBT ), with an occupation
number depending linearly on temperature nk � kBT/εk.

Figure 14 shows that temperature contributes signifi-
cantly to the observed contrasts. In particular, for a tem-
perature of the order of the chemical potential, which is a
typical situation in experiments, we find that the contrast
is 65%, not far from the contrast value of ∼ 50% observed
at ENS. Note that some zero temperature bending of the
vortex line is expected to occur for the parameters of ENS,
see Figure 4, which adds up to the thermal fluctuations
and further reduce the contrast in the experiment.

5.3 Mimicking a single experimental run: a Glauber P
method

Let us insist now on the fact that expectations values
calculated in the previous section are not sufficient for
a quantitative understanding of experiments. They just
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give an order of magnitude of what is observed. Indeed,
for example, for the particular value of λ that we have
chosen, the straight vortex is at the edge of the existence
domain and one expects large fluctuations of the phase
and of the density due to the soft core mode and also to
the emergence of low energy surface modes. As a conse-
quence, observables obtained from a single measurement
of the system may differ notably from their mean value.
Hence, the aim of this section is to evaluate the fluctua-
tions induced by the soft modes. Calculations of the pre-
vious subsection have shown that quantum fluctuations
do not contribute to the contrast at finite temperature, so
that semi-classical field approaches are good tools to an-
swer this problem. We use for that purpose the Glauber
P method of quantum optics [26].

This approach is made simple by the fact that
the N -body density operator D̂ is the exponential of
−HBog/(kBT ), where the Bogoliubov Hamiltonian is a
sum of decoupled harmonic oscillator terms, HBog =
E0 +

∑
k εkb̂

†
k b̂k. We introduce the coherent state of quasi-

particles |{βk}〉 = |βk1 , βk2 , βk3 . . . 〉, where |βk〉 is the nor-
malized eigenstate of the annihilation operators b̂k with
the eigenvalue βk. Then one defines the Glauber P repre-
sentation of D̂:

D̂ =
∫ ∏

k

dReβk dImβk

π
P ({βk′})|{βk′}〉〈{βk′}| . (51)

The explicit calculation of P is possible, as D is Gaussian
in the bk’s [26], this gives the following Gaussian distribu-
tion:

P ({βk′}) =
∏
k

1
nk

exp
(
−β

∗
kβk

nk

)
, (52)

where nk is the mean number of quasi-particles in the
mode k given in equation (46). This Gaussian distribution
is easily sampled. As P is positive one can imagine that
a given experimental realization of the gas is in the state
|{βk}〉 where the complex numbers βk vary randomly from
one realization to the other. In the following, we want to
determine the density and the velocity field of the atomic
gas for a given Monte Carlo realization of the {βk}.

The N -body distribution function corresponding to a
single term of the statistical mixture (51)

ρ(r1, . . . , rN ) = 〈{βk′}|ψ̂†(r1 ) . . . ψ̂†(rN )

×ψ̂(rN ) . . . ψ̂(r1 )|{βk′}〉 (53)

is not easy to calculate for the interacting Bose gas as ψ̂
is a superposition of b̂k and b̂†k so that the product of field
operators in (53) is not normally ordered in terms of the
b̂k. We perform the following approximation

b̂†k|{βk′}〉 � β∗
k|{βk′}〉 · (54)

The error has a root mean square norm equal to unity,
hence the approximation is good for modes with a large
occupation number, bad for empty modes. In this way we

Fig. 15. Representation of the x coordinate (solid line) and
the y coordinate (dashed line) of the vortex line as function
of the position z on the rotation axis, for a single stochastic
realization. The parameters are as in Figure 13, with T =
0.2Tc. Note that the transverse Thomas-Fermi radius is of the
order of 6 µm.

describe correctly the fluctuations due to finite temper-
ature, but not the quantum fluctuations existing even at
zero temperature. As we have shown previously, this is fine
in the dilute limit (ρa3)1/2 � 1, where quantum depletion
is small. The approximation amounts to taking

ψ̂(r )|{βk′}〉 � ψ(r )|{βk′}〉 (55)

with a classical field

ψ(r ) =
√
N0φ(r ) +

∑
k

βkuk(r ) + β∗
kv

∗
k(r ), (56)

where N0 is such that the norm squared of ψ is equal to
the total number of particles N [27]. In this approxima-
tion, a single realization is now in the coherent state |{ψ}〉
for the field ψ̂. In this case the N -body distribution func-
tion of the atoms for a single experimental realization is
factorized:

ρ(r1, . . . , rN ) =
∏
k

|ψ(rk )|2 . (57)

In this paragraph, we describe temperature effects in a sin-
gle stochastic realization of ψ at kBT = 0.2kBTC ∼ µ/2.
First, we have extracted the shape of the vortex line: Fig-
ure 15 shows the x and y coordinates of the vortex line as
function of z. The soft core modes localized at the two ex-
tremities [11,12] of the condensate are thermally excited
and as a result push the core away from the rotation axis.
This is a temperature induced bending. Second, for the
same stochastic realization, Figure 16 represents the lo-
cation of the vortices in the velocity field of the gas in
the plane z = 0. It shows that satellite vortices, which
are not easily observable in the density profile, appear
at the border of the condensate. The presence of these
vortices is due to the excitation of surface modes of low
energy and relatively high angular momentum (recall that
for λ = 1/5, Ω = 0.5ω⊥, the system is at the border of the
thermodynamic stability domain).
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Fig. 16. For an individual Monte Carlo realization of the Bose
field ψ, position of the vortices in the velocity field of the gas
in the plane z = 0, for a temperature T = 0.2Tc. The vortices
with a positive charge are indicated with a cross, the vortices
with a negative charge are indicated with a triangle. The circle
indicates the Thomas-Fermi border of the condensate. The x
and y coordinates are in units of (�/mω⊥)1/2. As a consequence
of thermal excitation of the low energy surface modes, satellite
vortices appear at the border of the condensate, around the
central vortex. The physical parameters are as in Figure 13.

We address now the problem of the integrated density
contrast for a single stochastic realization. In the previous
single stochastic realization at a temperature T = 0.2Tc,
the value of the contrast is around 90% which does not co-
incide with the mean contrast C � 85% derived in the pre-
vious subsection. This disagreement suggests strong fluc-
tuations of density along the z-axis. To confirm this idea
we have computed 10 000 stochastic realizations of the col-
umn density at the center of the trap. We have reported in
Figure 17 the corresponding histogram. This figure shows
effectively that the probability law is far from being Gaus-
sian: the long tail on the right side is due to 1D character
of the excitation modes of the vortex line, the so-called
kelvons, similar indeed to the fluctuations of the number
of condensate particles in a 1D Bose gas [28]. This is an-
other indication of the importance of fluctuations in the
properties of this system.

To be complete we now consider the effect on the con-
trast of the ballistic expansion of the cloud performed in
the experiment. As in Section 3.4 we integrate numeri-
cally the rescaled Gross-Pitaevskii equation, with a clas-
sical field ψ including thermal fluctuations. As we see in
Figure 18 the rescaling now absorbs to a lower extent the
effect of the ballistic expansion, but the density contrast
is only weakly changed.

Fig. 17. Histogram associated to the single realization column
density n at the center x = 0, y = 0, for 104 realizations.
This figure shows that the probability law of this observable is
strongly non Gaussian. n is in units of N/a2

⊥ = Nmω⊥/�. The
same parameters as in Figure 13 were used, with T = 0.2Tc.
We have observed that this non-Gaussian character subsists
even at a temperature as low as 0.05Tc.

Fig. 18. Comparison of the column density for a straight vor-
tex (λ = 1/5) at finite temperature (T = 5.71�ω⊥/kB) before
and after the release from the trap (time of flight ∼ 30 ms), as
a function of the rescaled ỹ coordinate. The same parameters
as in Figure 13 were used.

6 Conclusion

We have understood why the vortex line can bend in
a steady state cigar-shaped condensate rotated at fre-
quency Ω around its long axis z. In the Thomas-Fermi
regime the cigar-shaped condensate can be viewed as a
collection of slices parallel to the x–y-plane, each slice
corresponding formally to a 2D rotating condensate. For
each 2D condensate one defines as usual the critical rota-
tion frequency Ω2D

c above which it is energetically more
favorable to have the vortex core at the trap center rather
than at infinity. As the 3D condensate density is inhomo-
geneous along z-axis due to the harmonic confinement the
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local Ω2D
c is minimal in the plane z = 0 and maximal at

the end points of the cigar.
The vortex line then uses the following strategy to min-

imize its energy: it follows the rotation axis z in the eleva-
tion interval where the trap rotation frequency is larger
than the local Ω2D

c ’s, and moves away from the rota-
tion axis to infinity where Ω becomes smaller than the
local Ω2D

c .
This leads to the analytical prediction that the mini-

mal rotation frequency Ω1 required to stabilize the bent
vortex in a cigar-shaped condensate is equal to Ω2D

c (z =
0), that is the 2D critical rotation frequency corresponding
to the central slice z = 0.

Another analytical prediction is that, for Ω > Ω1, the
energy presents a saddle point, in addition to the previ-
ously discussed minimum. This saddle point is a stationary
configuration of the vortex line in the rotating frame, with
an angular momentum smaller than the one of the energy
minimum. The vortex line in the saddle point has also a
different position with respect to z-axis than in the min-
imum energy configuration: the vortex line, rather than
being on axis, is shifted away from the rotation axis by
an amount of the order of the transverse Thomas-Fermi
radius R⊥, and it has a much smaller length along z, also
on the order of R⊥. This description matches very recent
experimental observations of bent vortices at ENS [18].

To test the analytical predictions for the energy mini-
mum we have performed a full numerical minimization of
the Gross-Pitaevskii energy functional with the efficient
conjugate gradient method for typical parameters of the
ENS experiment. We have constructed in this way a phase
diagram giving the existence domain of a single vortex
configuration as a local minimum of energy, as function
of the trapping potential aspect ratio and of the rotation
frequency. The numerics confirm the analytical prediction
for Ω1, and give the rotation frequency Ω2 above which
surface modes of the condensate are destabilized and sev-
eral vortices enter the condensate.

We have also studied the effect of thermal fluctuations
of an otherwise straight vortex line in a cigar-shaped con-
densate. We find values of the mean density contrast of the
vortex hole close to the experimental results of [1]. Using
the Glauber P representation of the density operator of
the gas for the field of Bogoliubov quasi-particles, we can
predict what happens in a single realization of the experi-
ment: the vortex line experiences some bending, due to the
thermal population of low energy kelvon modes localized
close to the end points of the condensate. The 1D nature
of the kelvon modes leads to a remarkable non Gaussian
character of the vortex line fluctuations.
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Appendix A: Simple derivation of a vortex line
energy functional

We present here a derivation of an approximate energy
functional for a single vortex line in a Thomas-Fermi con-
densate subject to a harmonic potential rotating around
one of its eigenaxes. Such a derivation is available in the
literature [10] but it is rather complex as it directly in-
cludes the effect of curvature of the vortex line in the en-
ergy functional, and it applies for an arbitrary aspect ratio
of the condensate. The derivation that we propose has the
advantage of simplicity as (i) it is specialized to the case of
a very elongated condensate along the rotation axis z in a
cylindrically symmetric trap, that is the atomic oscillation
frequency ωz along z is much smaller than the oscillation
frequency ω⊥ in the transverse xy-plane, and (ii) it imme-
diately supposes that the explicit dependence of the en-
ergy functional on the curvature of the steady state bent
vortex line can be neglected. Point (ii) allows to assume
locally that the vortex line is straight, which greatly sim-
plifies the derivation of the energy functional. By com-
parison with the more general derivation of [10] we have
checked the validity of point (ii) [29].

Furthermore we assume in our derivation that the ro-
tation frequency Ω is of the order of

Ω ∼ �ω2
⊥
µ

(A.1)

where ω⊥ is the oscillation frequency of the atoms in the
xy-plane and µ is the chemical potential. It is indeed in
this range of rotation frequencies that the single vortex
configuration is first stabilized, and this also greatly sim-
plifies the derivation of the energy functional. One then
finds an energy difference between the vortex free config-
uration (of energy E0) and a configuration with a vortex
of the order of

E − E0 ∼ �
2ω2

⊥
µ

· (A.2)

The first step in the derivation of the approximate energy
functional is to rewrite the full Gross-Pitaevskii energy
functional (1) in terms of the modulus and the phase of
the condensate wavefunction φ(r):

φ(r ) = n1/2(r )eiS(r ) (A.3)

where n is the probability density normalized to unity.
At this stage it is convenient to introduce the so-called
velocity field of the condensate:

v(r ) =
�

m
gradS(r ). (A.4)

Note that v corresponds to the velocity field in the
lab frame, the velocity field in the rotating frame being



M. Modugno et al.: Bose-Einstein condensates with a bent vortex in rotating traps 251

v−Ω∧r. Inserting (A.3) into the Gross-Pitaevskii energy
functional (1) leads to an expression that we split for con-
venience in two contributions, one linked to the modulus
and the other one linked to the phase:

E = Emod + Ephase (A.5)

Emod =
∫

d3r
[

�
2

2m
(grad

√
n)2 + Un+

1
2
Ngn2

]
(A.6)

Ephase =
∫

d3rn
[
1
2
mv 2 − Ω · (r ∧mv)

]
· (A.7)

As already mentioned, the trapping potential U is axi-
symmetric with respect to z:

U =
1
2
m

[
ω2
⊥(x2 + y2) + ω2

zz
2
]
. (A.8)

We also give the conditions on n and v ensuring that φ is a
local extremum of the Gross-Pitaevskii energy functional:

0 = div [n(v − Ω ∧ r )] (A.9)

µ =
1
2
mv 2 + U +Ngn− �

2

2m
∆
√
n√
n

−mΩ ∧ r · v
(A.10)

where µ is the chemical potential. These conditions are
simply the time independent Gross-Pitaevskii equation
written in the modulus-phase representation.

A.1 Energy from the modulus

In the present Thomas-Fermi regime the contribution de-
pending only on the modulus can be evaluated along the
lines of our previous work [6]. One splits the density in a
slowly varying envelope nslow and a function f2 represent-
ing the density hole due to the vortex core:

n(r) = nslow(r)f2(r). (A.11)

The envelope nslow varies at the scale of the trans-
verse Thomas-Fermi radius of the condensate R⊥ =
(2µ/mω2

⊥)1/2 whereas f varies at the scale of the
diameter of a vortex core, that is the healing length
ξ = (�2/mµ)1/2 [30].

We now determine the function f from the require-
ment that it deviates significantly from unity only at a
distance at most a few ξ’s from the vortex core. As such
a length scale we neglect the spatial variation of U and of
nslow; we further check that in the range (A.1) of rotation
frequencies, the rotational velocity term Ω∧r is negligible
as compared to the vortex velocity field v, which allows
to neglect the Ω ∧ r terms close to the vortex core both
in (A.9) and (A.10):

|Ω ∧ r |
v

∼ ΩR⊥
�/mξ

∼ Ω

ω⊥
∼ �ω⊥

µ
� 1. (A.12)

Furthermore the minimal radius of curvature of the
vortex line is found in the subsequent calculations to

be of the order of R⊥ much larger than ξ. After all
these simplifications the function f is found locally to
solve the well-known Gross-Pitaevskii equation for a
straight vortex line in an infinite spatially homogeneous
condensate [8], this fictitious homogeneous condensate
having a particle density given by Nnslow evaluated on
the vortex line. We therefore take for f :

f(r ) = F (d/ξloc) (A.13)

where d is the distance of r to the vortex line and

ξloc =
�√

mgNnslow(r0)
(A.14)

is the local healing length at the position of the vortex
line [30]. The function F (u) does not depend on any
physical parameter. It can be obtained from a numerical
solution of the reduced Gross-Pitaevskii equation for
a vortex in a homogeneous condensate (see Eq. (2.84)
of [8]). In the large u limit, its deviation from unity tends
to zero as O(1/u2). For moderate values of u it is well
approximated by [6]

F (u) � tanh(0.7687u). (A.15)

The slowly varying envelope nslow is obtained from
(A.10) by removing the short range mv2/2 term already
included in f and by neglecting the quantum pressure
term ∝ ∆

√
n/

√
n in the spirit of the Thomas-Fermi

approximation. We write nslow as nTF + δn where

nTF(r) =
µ0 − U(r )

Ng
(A.16)

is the usual Thomas-Fermi approximation for the proba-
bility density in the absence of vortex and

Ngδn = δµ+ Ω ∧ r ·mv. (A.17)

The density correction δn includes the rotational term
and the deviation δµ of µ from the vortex free Thomas-
Fermi chemical potential µ0. Both contributions are of
the same small order. Using the estimate v ∼ �/mR⊥ we
find that the rotational term leads to

δnrot

nTF
∼ �Ω

µ0
∼

(
�ω⊥
µ0

)2

· (A.18)

We can also estimate δµ by multiplying (A.10) by n and
integrating over the whole space: we find a contribution
to δµ involving the rotational term,

δµrot = −Ω〈Lz〉 (A.19)

of the order of �Ω. A second contribution comes from the
fact that the vortex line digs an empty tube of volume
∼ Rzξ

2 in the condensate of volume ∼ R2
⊥Rz , where Rz

is the Thomas-Fermi radius along z, so that µ has to
differ from µ0 by a relative amount

δµnorm

µ0
∼ Rzξ

2

R2
⊥Rz

∼
(

�ω⊥
µ0

)2

(A.20)

to ensure that n is normalized to unity.
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We now proceed with the calculation ofEmod, inserting
the ansatz (A.11) in (A.6). We calculate first the harmonic
plus interaction potential energy part of Emod, then the
kinetic energy part of Emod.

In the harmonic plus interaction potential energy
terms, we use the identity f2 = (f2−1)+1 and we collect
the terms in powers of f2 − 1:

Epot = E
(0)
pot + E

(1)
pot + E

(2)
pot (A.21)

E
(0)
pot =

∫
d3r

(
Ng

2
n2

slow + Unslow

)
(A.22)

E
(1)
pot =

∫
d3r (Ngnslow + U)nslow(f2 − 1) (A.23)

E
(2)
pot =

∫
d3r

Ng

2
n2

slow(f2 − 1)2. (A.24)

The zeroth degree term is of the order of magnitude of µ
so that one has to include the deviation of nslow from nTF

to first order in order to get the leading term (A.2) in the
vortex energy. Using the fact that NgnTF + U = µ0 we
obtain

E
(0)
pot = ETF + µ0

∫
d3r δn+ o(�2ω2

⊥/µ), (A.25)

where we have introduced the Thomas-Fermi approxima-
tion to the energy E0 of the vortex free configuration:

E0 � ETF =
∫

d3r
(
Ng

2
n2

TF + UnTF

)
· (A.26)

The first degree term E
(1)
pot and the second degree term

E
(2)
pot are of the order of �

2ω2
⊥/µ0 as |f2−1| is close to unity

in a cylinder of volume Rzξ
2 and is negligible outside. We

can therefore approximate nslow by nTF in E(1)
pot and E(2)

pot.

We then get for E(1)
pot:

E
(1)
pot � µ0

∫
d3rnTF(f2 − 1)

= −µ0

∫
d3r δnf2 � −µ0

∫
d3r δn (A.27)

where we have used the normalization of nTF and of
nslowf

2 = (nTF + δn)f2 to unity. We thus see that at
the present order of the calculation E(1)

pot compensates the

term linear in δn in E(0)
pot. We finally get:

Epot − ETF �
∫

d3r
Ng

2
n2

TF(f2 − 1)2. (A.28)

In this integral we introduce a local system of cylindri-
cal coordinates (ρ, θ, Z) with a vertical axis Z tangent to
the vortex line, see Figure 19, the first coordinate ρ being
the distance to the vortex line. We then approximate nTF

by its local value on the vortex line. The angular integral
over θ gives a factor 2π. The function f2 − 1 depends on
the distance ρ to the vortex line, see equation (A.13), and

Fig. 19. Local frame with Cartesian coordinates X,Y,Z
around a point r0(s) of the locally straight vortex line. Lo-
cal axis Z is tangent to the vortex line and has the orientation
of the local vorticity, so that the unit vector along Z coincides
with the vector t(s) tangent to the vortex line defined in the
text. X, Y are arbitrary Cartesian coordinates in the plane
orthogonal to Z. One then defines the corresponding cylindri-
cal coordinates ρ, θ, Z of an arbitrary point M , e.g. ρ is the
distance of M to the vortex line.

the corresponding integral over ρ can be extended to in-
finity as (f2−1)2 tends rapidly to zero far from the vortex
line. We parametrize the vortex line by its curvilinear ab-
scissa s. We then realize that in the integral over Z we
can make the reinterpretation dZ = ds so that

Epot − ETF �
∫

ds
Ng

2
n2

TF(r0(s))

×
∫ +∞

0

2πρdρ
[
F 2(ρ/ξloc(s)) − 1

]2
(A.29)

where r0(s) is the position of the vortex line at abscissa
s. Finally rescaling ρ by ξloc in the integral over ρ and
replacing nslow by nTF in (A.14) leads to

Epot − ETF � A0

∫
ds
π�

2

m
nTF(r0(s)) (A.30)

where the constant factor A0 is

A0 =
∫ +∞

0

u du
[
F (u)2 − 1

]2
. (A.31)

In the kinetic energy term of Emod, we neglect the spa-
tial derivative of the slowly varying envelope nslow and of
the local healing length ξ, as they both vary on a length
scale R⊥. We calculate the gradient of f in the local sys-
tem of cylindrical coordinates (ρ, θ, Z) of Figure 19:

(gradf)2 =
1
ξ2loc

F
′2(ρ/ξloc). (A.32)

This function vanishes at ρ
 ξloc from the vortex line so
that we can replace nslow by its value on the vortex line
and extend the integral over ρ to infinity. The integral over
the angle θ gives a factor 2π. As in the previous paragraph
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we use dZ = ds where s is the curvilinear abscissa on the
vortex line, we rescale ρ by ξloc in the integral over ρ
and we replace nslow by the vortex free Thomas-Fermi
expression nTF. We then obtain for the kinetic energy part
of Emod:

Ekin
mod � A1

∫
ds
π�

2

m
nTF(r0(s)) (A.33)

where the constant factor A1 is given by

A1 =
∫ +∞

0

uduF
′2(u). (A.34)

To summarize the vortex energy stored in the modulus of
the condensate wavefunction is approximated by

Emod − ETF � (A0 +A1)
∫

ds
π�

2

m
nTF(r0(s)). (A.35)

We estimate Emod−ETF to be indeed of the order of mag-
nitude of �

2ω2
⊥/µ0, as expected from (A.2), by taking a

length Rz for the part of the vortex line inside the conden-
sate and a typical value for the Thomas-Fermi envelope
nTF ∼ 1/RzR

2
⊥.

A.2 Energy involving the velocity field

The energy term Ephase is quite difficult to evaluate in its
present form (A.7): since the velocity field tends to zero
slowly away from the vortex line (as �/md where d is the
distance to the vortex line), all the parts of the Thomas-
Fermi volume of the condensate give approximately the
same contribution. A direct 3D integration cannot be per-
formed as the velocity field far from the vortex line is
not known explicitly [31], with the notable exception of a
straight vortex line on axis z.

The trick that we borrow from [10] is to transform the
volume integral (A.7) in a line integral, by “integrating by
part” and using the fact that curl v is known exactly:

curl v(r) =
2π�

m

∫
ds t(s) δ(r − r0(s)) (A.36)

where s is the curvilinear abscissa along the vortex line
and t is the unit vector tangent to the vortex line and ori-
ented in the direction of the local vorticity (t has a positive
component along z for a positive rotation frequency Ω).
Physically one can use an electromagnetic analogy: curl v
corresponds to a linear current, that is a perfectly filiform
charge current, of intensity 2π�/m circulating in the vor-
tex line.

The “integration by part” to be performed relies on
the following vectorial identity

div(A ∧B) = B · curlA − A · curlB. (A.37)

Integrating this identity over whole space and using
Ostrogradski’s formula we arrive at the desired identity∫

d3rA · curlB =
∫

d3rB · curlA (A.38)

where we have assumed that the total flux of the vector
A ∧ B vanishes through a surface at infinity.

We apply (A.38) first to transform the contribution
Ekin

phase of v 2 to (A.7):

Ekin
phase =

∫
d3r

1
2
mnv 2. (A.39)

We have to choose A = v so that curl v appears in the
left hand side of (A.38). We then set [32]:

curl B � nv. (A.40)

This is an approximation as nv does not have strictly
speaking a vanishing divergence. The vector which has an
exactly vanishing divergence is the probability current in
the rotating frame, n(v−Ω∧r ), see (A.9). Fortunately we
can repeat the reasoning of Section A.1. At a distance of
up to a few healing lengths ξ from the vortex core, the ro-
tation term Ω∧r is negligible as compared to the velocity
field v, see (A.12) so that (A.9) reduces to div(nv ) � 0.
At a distance much larger than ξ from the vortex core the
density n can be approximated by the vortex free Thomas-
Fermi density nTF so that (A.9) reduces to

div [nTF(v − Ω ∧ r )] � 0. (A.41)

As the Thomas-Fermi density nTF is rotationally symmet-
ric with respect to the rotation axis z, we have [33]

div [nTFΩ ∧ r] = 0 (A.42)

so that (A.41) reduces to div(nv ) � 0. This finally leads
to the desired line integral reformulation for Ekin

phase:

Ekin
phase � π�

∫
dsB (r0(s)) · t (s). (A.43)

The calculation of B remains a challenge. Formally B can
be considered as the static magnetic field created by a
current proportional to nv so that we have the Biot and
Savart formula [34]:

B (r ) =
1
4π

∫
d3r ′ nv (r ′) ∧ (r − r ′)

|r − r ′|3 (A.44)

but this requires in principle the knowledge of the velocity
field v everywhere [35]. In practice the problem is simpli-
fied by the fact that one needs to know B on the vortex
line only, r = r0(s) for any fixed s, and by the fact that
the integrand (A.44) tends rapidly to zero for increasing
|r0(s) − r ′| so that it is sufficient to know the velocity
field v close to the vortex line. As mentioned in the be-
ginning of this appendix we assume that the vortex line
is locally straight around the point r0(s). We then ap-
proximate v by the velocity field of a straight vortex in a
homogeneous medium. In the local system of cylindrical
coordinates (ρ, θ, Z) defined in Figure 19 we thus write

v(r ′) � �

m

eθ

ρ
· (A.45)
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In this local frame the vector r ′ − r0(s) is equal to ρeρ +
ZeZ and the unit vector eZ tangent to the vortex line
actually coincides with t (s) so that one has

t (s) · [v(r ′) ∧ (r0(s) − r ′)] � �

m
· (A.46)

This leads to the rather explicit expression

Ekin
phase ∼

�
2

4m

∫
ds

∫
d3r ′ n(r ′)

|r0(s) − r ′|3 · (A.47)

To calculate (A.47) we write n = nslowf
2 � nTF(f2−1)+

nTF as in Section A.1. This leads to a splitting of Ekin
phase

in two pieces.
The piece involving f2 − 1 is re-expressed in terms of

the local cylindrical coordinates (ρ, θ, Z) of the localXY Z
frame of Figure 19:

Ekin
phase(I) ≡

�
2

4m

∫
ds

∫
d3r ′ nTF(r ′)[f2(r ′) − 1]

(|r0(s) − r ′|2 + ε2)3/2

=
�

2

4m

∫
ds

∫
d3R

nTF(r ′)[F 2(ρ/ξloc(s)) − 1]

(ρ2 + Z2 + ε2)3/2

where we introduced an arbitrarily small ε in the denom-
inator to prevent a divergence of the integral. The inte-
grand as a function of Z is tending to zero as soon as
|Z| exceeds a few times ρ. As ρ is limited to a few times
ξloc(s) by the function F 2−1, the integrand becomes neg-
ligible as soon as |Z| exceeds a few times ξloc(s), which
allows to approximate the slowly varying Thomas-Fermi
envelope nTF by its value on the vortex line and to extend
the integration over Z to infinity. Using∫ +∞

−∞
dZ

1
(Z2 + ρ2 + ε2)3/2

=
2

ρ2 + ε2
(A.48)

and extending in the resulting integral the integration over
ρ to ∞ we obtain the result

Ekin
phase(I) �

π�
2

m

∫
ds nTF(r0(s))

×
∫ +∞

0

ρdρ
F 2(ρ/ξloc(s)) − 1

ρ2 + ε2
· (A.49)

A more explicit form will be given in the next subsection.
The remaining piece of Ekin

phase involves the Thomas-
Fermi envelope only:

Ekin
phase(II) =

�
2

4m

∫
ds

∫
d3r ′ nTF(r ′)

(|r0(s) − r ′|2 + ε2)3/2
·

(A.50)

We simplify this expression by taking advantage of the
cigar shaped nature of the condensate. We first integrate
(A.47) over z′. As in the previous paragraph we use the
fact that the integral∫ z0(s)+ζ

z0(s)−ζ

dz′
1

|r0(s) − r ′|3 (A.51)

converges to its ζ = +∞ value as soon as ζ exceeds a
few times |r0⊥(s)− r ′

⊥|, where r⊥ is the projection of the
vector r in the xy-plane. The range of |r⊥| is limited to
the transverse Thomas-Fermi radius of the condensate by
the presence of nTF(r ′) in the integrand. The range of
|r0⊥(s)| exceeds R⊥ for a bent vortex line as the vortex
line gets out of the Thomas-Fermi profile of the conden-
sate; however the contribution to the energy of the vortex
line segments at a distance exceeding a few R⊥’s becomes
much smaller than (A.1) and is hence negligible, see Ap-
pendix B. We can therefore assume that |r0⊥(s)−r ′

⊥| is at
most a few times R⊥ in (A.50) so that the integral over z′
converges over a distance of R⊥. At such a length scale
along the rotation axis z, nTF(x′, y′, z′) is almost constant
for a cigar shaped condensate and can be approximated
by nTF(x′, y′, z0(s)). We then extend the integration over
z′ to infinity and we use (A.48) to get

Ekin
phase(II) �

�
2

2m

∫
ds

∫
dx′ dy′

nTF(x′, y′, z0(s))
|r0⊥(s) − r ′|2 + ε2

·
(A.52)

The resulting integral over x′, y′ can be calculated exactly
and was already encountered in the 2D calculation of [6].
We will give the result in the next subsection.

Finally we apply the “integration by part” technique
(A.38) to the last term of Ephase, the rotational energy
term:

Erot
phase ≡

∫
d3rn [−Ω · r ∧mv ] = −m

∫
d3r v · (nΩ ∧ r ).

(A.53)

Note that this term is simply −Ω〈Lz〉, where 〈Lz〉 is the
angular momentum per particle along z. Calculation of
this term is considerably simpler than Ekin

phase. First one
can approximate n by the Thomas-Fermi envelope nTF,
neglecting in particular the density hole due to the vortex
line [36]. Then one realizes that nTFΩ ∧ r, having a van-
ishing divergence, see (A.42), can be written as the curl of
some vectorial field B. One finds inside the Thomas-Fermi
condensate [10]

B =
Ng

2mω2
⊥
n2

TFΩ (A.54)

and one takes B = 0 out of the Thomas-Fermi condensate.
One then uses (A.38) and (A.36) to obtain

Erot
phase � −π�NgΩ

mω2
⊥

∫
ds t (s) · ez n

2
TF(r0(s)) (A.55)

where ez is the unit vector along z. Note that t (s) · ez =
cosα(s) where α is the angle between the vortex line
and the rotation axis z, so that the integration element
ds cosα(s) is simply dz, the length of the projection of the
vortex line along z. From the estimate nTF ∼ 1/R2

⊥Rz ∼
µ0/Ng and for a vortex length ∼ Rz inside the Thomas-
Fermi envelope one gets Erot

phase ∼ −�Ω, as expected from
〈Lz〉 ∼ � for a single vortex configuration. This is in the
energy range (A.2) for a rotation frequency of the order
of (A.1).
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A.3 In terms of a 2D energy functional

We now reexpress the 3D vortex line energy functional
that we have obtained in terms of the energy functional
of a 2D condensate with a vortex. Physically we associate
a 2D fictitious condensate to each horizontal slice of the
3D condensate. Each 2D condensate is stored in a isotropic
harmonic potential mω2

⊥(x2 + y2)/2 with a rotation fre-
quency Ω, and has the same number N of particles as
the 3D condensate. The fictitious 2D condensate at eleva-
tion z has a vortex at a position given by the intersection
of the 3D vortex line with the horizontal plane of eleva-
tion z. The 2D condensate has a Thomas-Fermi chemical
potential

µ2D(z) = µ0 − 1
2
mω2

zz
2 (A.56)

where µ0 is the 3D vortex free Thomas-Fermi chemical
potential. The Thomas-Fermi radius of the 2D condensate
therefore coincides with the one R⊥(z) of the 3D conden-
sate at elevation z:

R⊥(z) =
(

2µ2D(z)
mω2

⊥

)1/2

· (A.57)

Using the Thomas-Fermi value of the chemical potential
for a 2D condensate we get the effective 2D coupling con-
stant of the 2D condensates:

g2D(z) =
πµ2

2D(z)
Nmω2

⊥
· (A.58)

We can then relate the 2D Thomas-Fermi density of the
2D condensate to the Thomas-Fermi 3D density of the
true condensate:

µ0 − U(r ) = gnTF(r ) = g2D(z)n2D(r⊥; z). (A.59)

Collecting all the energy terms of this section and after
lengthy calculations we produce the result

E − ETF �
∫

ds
g2D(z0(s))

g

× [
EΩ=0

2D (r0⊥(s); z0(s)) + cos(α(s))Erot
2D (r0⊥(s); z0(s))

]
(A.60)

where α(s) is the angle between the vortex line and the
axis z. The first 2D energy functional term contains the
kinetic energy and the harmonic plus interaction potential
energy. For a vortex core inside the Thomas-Fermi radius
of the condensate, that is for r̃⊥ ≡ r⊥/R⊥(z) < 1, it is
given by

EΩ=0
2D (r⊥; z) =

(�ω⊥)2

µ2D(z)

×
{

1
2

+
(
1 − r̃2⊥

) [
C + log

[
µ2D(z)
�ω⊥

(
1 − r̃2⊥

)]]}
(A.61)

where the value of the constant C is

C = A0 +A1 − 1 +
1
2

log 2 +
∫ 1

0

du
F 2(u)
u

+
∫ +∞

1

F 2(u) − 1
u

du · (A.62)

For r̃⊥ > 1 the vortex line at elevation z is out of the
Thomas-Fermi condensate and only Ekin

phase has a non-
vanishing contribution to EΩ=0

2D :

EΩ=0
2D (r⊥; z) =

(�ω⊥)2

2µ2D(z)

[
1 +

(
1 − r̃2⊥

)
log

r̃2⊥
r̃2⊥ − 1

]
.

(A.63)

The second energy functional term in (A.60) is the rota-
tional energy; it is given for r̃⊥ < 1 by

Erot
2D (r⊥; z) � −�Ω(1 − r̃2⊥)2 (A.64)

and it vanishes out of the condensate, that is for r̃⊥ > 1.
If one uses the hyperbolic tangent estimate of [6] for F ,
see (A.15), one gets C � 0.0884. The 2D energy func-
tional EΩ=0

2D +Erot
2D then coincides exactly with the one of

equation (64) in [6].

A.4 Improving the 2D energy functional

By a more detailed analysis than in [6] of the properties
of the 2D energy functional EΩ=0

2D we have identified a
pathology that lead to problems in the full 3D energy func-
tional minimization: the derivative of EΩ=0

2D (r⊥; z) with
respect to r⊥ presents a logarithmic singularity on the
border of the Thomas-Fermi condensate r⊥ = R⊥(z),
that is it diverges logarithmically to +∞ in r̃⊥ = 1−
and to −∞ in r̃⊥ = 1+. As a consequence EΩ=0

2D (r⊥; z)
has a local minimum inside the Thomas-Fermi conden-
sate, at a distance of the order of the healing length
ξ2D = �/(mµ2D(z))1/2 from the border, see Figure 20.
This local minimum of energy is an artifact of the approx-
imations used in the appendix: it is found by a numerical
minimization of the full Gross-Pitaevskii energy functional
with imaginary time propagation, that a vortex is going
out of the condensate to infinity in the absence of trap
rotation.

This artifact was not relevant in the 2D case, one just
had to restrict to the Thomas-Fermi limit µ2D 
 �ω⊥
with vortex cores inside the Thomas-Fermi condensate
(excluding a thin layer of thickness � ξ2D around the
boundary). In the 3D case this artifact cannot easily be
avoided: the bent vortex necessarily tries to cross the
boundary of the condensate, where it encounters the loga-
rithmic singularity and can remain trapped. This problem
is also worse in 3D because the 3D vortex line can explore
the extremities of the cigar shaped condensate, where the
local 2D chemical potential µ2D(z) can be of the order of
�ω⊥; the local minimum artifact in EΩ=0

2D then becomes
very pronounced, see Figure 20b, which seriously prevents
the vortex line from bending and leaving the condensate.
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Fig. 20. For a 2D condensate in a non-rotating harmonic trap,
energy of a vortex as function of the vortex distance r⊥ to the
trap center, for a fixed chemical potential (a) µ2D = 8�ω⊥
and (b) µ2D = �ω⊥. Solid line: the original energy functional
of [6], see equations (A.61, A.63), which presents a spurious
local minimum inside the Thomas-Fermi condensate. Dashed
line: the η-regularized energy functional heuristically proposed
here.

Heuristically we perform a modification to the energy
functional EΩ=0

2D eliminating the spurious trapping of the
vortex line in the absence of rotation. In the region out of
the Thomas-Fermi condensate, r̃⊥ > 1, we realized that
EΩ=0

2D is well approximated by a small 1/r̃⊥ expansion of
the logarithmic term in (A.63) so that we take

ĒΩ=0
2D (r⊥; z) =

(�ω⊥)2

2µ2D(z)

(
1

2r̃2⊥
+

1
2r̃4⊥

)
· (A.65)

In the inner Thomas-Fermi region, r̃⊥ < 1, we eliminate
the logarithmic singularity of the derivative at the inner
border of the condensate by adding a constant term η to

the argument of the logarithm of (A.61):

ĒΩ=0
2D (r⊥; z) =

(�ω⊥)2

µ2D(z)

×
{

1
2

+
(
1 − r̃2⊥

) [
C + log

[
η +

µ2D(z)
�ω⊥

(
1 − r̃2⊥

)]]}
·

(A.66)

These definitions lead to a continuous function ĒΩ=0
2D . The

value of η is adjusted to further ensure continuity of the
derivatives of ĒΩ=0

2D in r̃⊥ = 1:

η = e3/4−C � 1.938. (A.67)

As seen in Figure 20 the regularized function ĒΩ=0
2D has

no local minimum, even for a chemical potential smaller
than �ω⊥.

In 2D the physical predictions derived from ĒΩ=0
2D

slightly differ in the Thomas-Fermi regime from the
ones from EΩ=0

2D . For example the critical rotation fre-
quency Ω2D

c such that the single vortex configuration has
the same energy as the vortex free configuration is, from
ĒΩ=0

2D :

Ω̄2D
c =

�ω2
⊥

µ2D
log

[
eC+1/2

(
µ2D

�ω⊥
+ η

)]
(A.68)

whereas the original one in [6] is

Ω2D
c =

�ω2
⊥

µ2D
log

[
eC+1/2

(
µ2D

�ω⊥

)]
· (A.69)

In the Thomas-Fermi limit Ω̄2D
c and Ω2D

c differ by a term
scaling as η�3ω3

⊥/µ
2
2D which is beyond accuracy of the

energy functional derivation of the present appendix. The
stabilization rotation frequency Ω2D

stab such that the single
vortex core is a local minimum of energy is also modified:

Ω̄2D
stab =

�ω2
⊥

2µ2D
log

[
eC+1/(1+η�ω⊥/µ2D)

(
µ2D

�ω⊥
+ η

)]
(A.70)

but this varies only to second order in η�ω⊥/µ2D.

Appendix B: Energy of the vortex line
segments far from the condensate

We give here the behaviour of the field B defined by (A.44)
far from the Thomas-Fermi condensate, that is at a dis-
tance r much larger than the Thomas-Fermi radii of the
condensate. This problem is formally equivalent to the cal-
culation in magnetostatics of the magnetic field B very far
from a localized distribution of current j = nv/µ0 where
µ0 is the magnetic permeability of vacuum. This calcula-
tion is performed for example in [34]. From the property
divj = 0 one finds that the leading term in the 1/r expan-
sion corresponds to a dipolar field created by the magnetic
dipole moment M of the current distribution:

B (r ) � µ0

4πr3
[3u (u · M ) − M ] (B.1)
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where u = r/r and the moment M is here proportional to
the mean angular momentum per particle in the conden-
sate:

M ≡ 1
2

∫
d3r ′ r ′ ∧ j (r ′) =

1
2mµ0

〈L〉. (B.2)

As a consequence B tends to zero as 1/r3 at infinity, so
that the total flux of v ∧ B vanishes at infinity, as it was
assumed in (A.38). When the condensate wavefunction is
symmetric under reflection with respect to the xy-plane,
as expected for a planar bent vortex contained in the xz-
plane, the x and y component of 〈L〉 vanish and we get

B (r ) � 〈Lz〉
8πm

3u (u · ez) − ez

r3
· (B.3)
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